Sobre o Tor

As mentioned above, it is possible for an observer who can view both you and either the destination website or your Tor exit node to correlate timings of your traffic as it enters the Tor network and also as it exits. Tor does not defend against such a threat model.

In a more limited sense, note that if a censor or law enforcement agency has the ability to obtain specific observation of parts of the network, it is possible for them to verify a suspicion that you talk regularly to your friend by observing traffic at both ends and correlating the timing of only that traffic. Again, this is only useful to verify that parties already suspected of communicating with one another are doing so. In most countries, the suspicion required to obtain a warrant already carries more weight than timing correlation would provide.

Furthermore, since Tor reuses circuits for multiple TCP connections, it is possible to associate non anonymous and anonymous traffic at a given exit node, so be careful about what applications you run concurrently over Tor. Perhaps even run separate Tor clients for these applications.

Internet communication is based on a store-and-forward model that can be understood in analogy to postal mail: Data is transmitted in blocks called IP datagrams or packets. Every packet includes a source IP address (of the sender) and a destination IP address (of the receiver), just as ordinary letters contain postal addresses of sender and receiver. The way from sender to receiver involves multiple hops of routers, where each router inspects the destination IP address and forwards the packet closer to its destination. Thus, every router between sender and receiver learns that the sender is communicating with the receiver. In particular, your local ISP is in the position to build a complete profile of your Internet usage. In addition, every server in the Internet that can see any of the packets can profile your behavior.

The aim of Tor is to improve your privacy by sending your traffic through a series of proxies. Your communication is encrypted in multiple layers and routed via multiple hops through the Tor network to the final receiver. More details on this process can be found in this visualization. Note that all your local ISP can observe now is that you are communicating with Tor nodes. Similarly, servers in the Internet just see that they are being contacted by Tor nodes.

Generally speaking, Tor aims to solve three privacy problems:

First, Tor prevents websites and other services from learning your location, which they can use to build databases about your habits and interests. With Tor, your Internet connections don't give you away by default -- now you can have the ability to choose, for each connection, how much information to reveal.

Second, Tor prevents people watching your traffic locally (such as your ISP or someone with access to your home wifi or router) from learning what information you're fetching and where you're fetching it from. It also stops them from deciding what you're allowed to learn and publish -- if you can get to any part of the Tor network, you can reach any site on the Internet.

Third, Tor routes your connection through more than one Tor relay so no single relay can learn what you're up to. Because these relays are run by different individuals or organizations, distributing trust provides more security than the old one hop proxy approach.

Note, however, that there are situations where Tor fails to solve these privacy problems entirely: see the entry below on remaining attacks.

O nome "Tor" pode referir-se a diversos componentes.

Tor é um programa que você pode rodar no seu computador que lhe ajuda a se manter seguro na Internet. Isso te protege retransmitindo suas comunicações em uma rede distribuída de relés, rodada por pessoas voluntárias ao redor do mundo: evita que alguém que esteja observando sua conexão com a Internet saiba dos sites que você visita, e que estes saibam a sua localização física. Este set de relés voluntários se denomina Rede Tor.

A maneira como a maioria das pessoas utiliza o Tor é com o Navegador Tor, uma versão do Firefox que conserta muitos dos problemas de privacidade. Você pode ler mais sobre o Tor em nossa página Sobre.

O Projeto Tor é uma organização sem fins lucrativos (de caridade) que mantém e desenvolve o software Tor.

Tor é a rede Onion routing. Quando estávamos iniciando o novo design e implementação de roteamento de onion da próxima geração em 2001-2002, diríamos às pessoas que estávamos trabalhando no roteamento de onion e elas diriam "Legal. Qual?" Mesmo se o roteamento da onion se tornar um termo doméstico padrão, o Tor de fato nasceu de um projeto de roteamento de onion feito pelo Naval Research Lab.

(Também tem um bom significado em alemão e turco.)

Nota: mesmo que originalmente tenha vindo de um acrônimo, o Tor não está escrito "TOR". Somente a primeira letra é maiúscula. De fato, geralmente podemos identificar pessoas que não leram nenhum de nosso site (e aprenderam tudo o que sabem sobre o Tor em artigos de notícias) pelo fato de escreverem errado.

Não, não faz. Você precisa usar um programa separado que entenda seu aplicativo e protocolo e saiba como limpar ou "limpar" os dados que ele envia. O Navegador Tor tenta manter os dados no nível do aplicativo, como a sequência do agente do usuário, uniforme para todos os usuários. O Navegador Tor, porém, não consegue fazer nada em relação ao texto que você digita nos formulários.

Um provedor de proxy típico configura um servidor em algum lugar da Internet e permite que você o use para retransmitir seu tráfego. Isso cria uma arquitetura simples e fácil de manter. Todos os usuários entram e saem pelo mesmo servidor. O provedor pode cobrar pelo uso do proxy ou financiar seus custos através de anúncios no servidor. Na configuração mais simples, você não precisa instalar nada. Você apenas precisa apontar o navegador para o servidor proxy. Provedores de proxy simples são ótimas soluções se você não deseja proteções para sua privacidade e anonimato online e confia que o provedor não fará coisas ruins. Alguns provedores de proxy simples usam SSL para proteger sua conexão com eles, o que protege contra intrusos locais, como os de um café com Internet Wi-Fi gratuita.

Provedores de proxy simples também criam um único ponto de falha. O provedor sabe quem você é e o que você navega na Internet. Eles podem ver seu tráfego enquanto ele passa pelo servidor deles. Em alguns casos, eles podem até ver dentro do seu tráfego criptografado enquanto o retransmitem para o seu site bancário ou para as lojas de comércio eletrônico. Você precisa confiar que o provedor não está assistindo seu tráfego, injetando seus próprios anúncios em seu fluxo de tráfego ou gravando seus dados pessoais.

O Tor passa seu tráfego por pelo menos três servidores diferentes antes de enviá-lo ao destino. Como há uma camada separada de criptografia para cada um dos três relés, alguém assistindo à sua conexão com a Internet não pode modificar ou ler o que você está enviando para a rede Tor. Seu tráfego é criptografado entre o cliente Tor (no seu computador) e onde ele sai em algum outro lugar do mundo.

O primeiro servidor não vê quem eu sou?

Possivelmente. Um mau primeiro de três servidores pode ver o tráfego Tor criptografado vindo do seu computador. Ainda não sabe quem você é e o que está fazendo com Tor. Ele apenas vê "Este endereço IP está usando o Tor". Você ainda está protegido contra este nó, descobrindo quem você é e para onde está indo na Internet.

O terceiro servidor não consegue ver meu tráfego?

Possivelmente. Um terço ruim de três servidores pode ver o tráfego enviado para o Tor. Não saberá quem enviou esse tráfego. Se você estiver usando criptografia (como HTTPS), ele saberá apenas o destino. See this visualization of Tor and HTTPS to understand how Tor and HTTPS interact.

Sim.

O software Tor é software livre. Isso significa que concedemos a você o direito de redistribuir o software Tor, modificado ou não, mediante taxa ou gratuitamente. Você não precisa nos pedir permissão específica.

No entanto, se você deseja redistribuir o software Tor, deve seguir nossa LICENÇA. Essencialmente, isso significa que você precisa incluir nosso arquivo LICENSE junto com qualquer parte do software Tor que estiver distribuindo.

A maioria das pessoas que nos faz essa pergunta não deseja distribuir apenas o software Tor. Eles querem distribuir o navegador Tor. This includes Firefox Extended Support Release and the NoScript extension. Você precisará seguir a licença para esses programas também. Ambas as extensões do Firefox estão distribuídas sob a GNU General Public License, enquanto o Firefox ESR está sob a Licença Pública do Mozilla. A maneira mais simples de obedecer suas licenças é incluir o código fonte desses programas em todos os lugares em que você incluir os pacotes configuráveis.

Além disso, certifique-se de não confundir seus leitores sobre o que é o Tor, quem o cria e quais propriedades ele fornece (e não fornece). Veja nosso FAQ da marca para mais detalhes.

Existem muitos outros programas que você pode usar com o Tor, mas não pesquisamos os problemas de anonimato no nível do aplicativo em todos eles o suficiente para poder recomendar uma configuração segura. Nossa wiki possui uma lista mantida pela comunidade de instruções para Torificando aplicações específicas. Por favor, adicione a essa lista e nos ajude a mantê-la precisa!

A maioria das pessoas usa o Navegador Tor, que inclui tudo o que você precisa para navegar na web com segurança usando o Tor. Using Tor with other browsers is dangerous and not recommended.

Não há absolutamente nenhum backdoor no Tor.

Conhecemos alguns advogados inteligentes que dizem que é improvável que alguém tente nos fazer adicionar um em nossa jurisdição (EUA). Se eles nos perguntarem, lutaremos contra eles e (dizem os advogados) provavelmente vencerão.

Nunca colocaremos um backdoor no Tor. Achamos que colocar um backdoor no Tor seria tremendamente irresponsável com os nossos usuários e um mau precedente para os softwares de segurança em geral. Se algum dia colocássemos um backdoor em nosso software de segurança, isso arruinaria nossa reputação profissional. Ninguém nunca mais confiaria no nosso software - por uma excelente razão!

Mas dito isso, ainda existem muitos ataques sutis que as pessoas podem tentar. Alguém pode se passar por nós, invadir nossos computadores ou algo assim. O Tor é de código aberto e você deve sempre verificar a fonte (ou pelo menos os diffs desde o último lançamento) quanto a suspeitas. Se nós (ou os distribuidores que lhe deram o Tor) não lhe dermos acesso ao código fonte, é um sinal claro de que algo engraçado pode estar acontecendo. You should also check the PGP signatures on the releases, to make sure nobody messed with the distribution sites.

Além disso, pode haver erros acidentais no Tor que podem afetar seu anonimato. Periodicamente, localizamos e corrigimos bugs relacionados ao anonimato, portanto, mantenha suas versões do Tor atualizadas.

Tor (like all current practical low-latency anonymity designs) fails when the attacker can see both ends of the communications channel. For example, suppose the attacker controls or watches the Tor relay you choose to enter the network, and also controls or watches the website you visit. In this case, the research community knows no practical low-latency design that can reliably stop the attacker from correlating volume and timing information on the two sides.

So, what should we do? Suppose the attacker controls, or can observe, C relays. Suppose there are N relays total. If you select new entry and exit relays each time you use the network, the attacker will be able to correlate all traffic you send with probability around (c/n)2. But profiling is, for most users, as bad as being traced all the time: they want to do something often without an attacker noticing, and the attacker noticing once is as bad as the attacker noticing more often. Thus, choosing many random entries and exits gives the user no chance of escaping profiling by this kind of attacker.

The solution is "entry guards": each Tor client selects a few relays at random to use as entry points, and uses only those relays for their first hop. If those relays are not controlled or observed, the attacker can't win, ever, and the user is secure. If those relays are observed or controlled by the attacker, the attacker sees a larger fraction of the user's traffic - but still the user is no more profiled than before. Thus, the user has some chance (on the order of (n-c)/n) of avoiding profiling, whereas they had none before.

You can read more at An Analysis of the Degradation of Anonymous Protocols, Defending Anonymous Communication Against Passive Logging Attacks, and especially Locating Hidden Servers.

Restricting your entry nodes may also help against attackers who want to run a few Tor nodes and easily enumerate all of the Tor user IP addresses. (Even though they can't learn what destinations the users are talking to, they still might be able to do bad things with just a list of users.) However, that feature won't really become useful until we move to a "directory guard" design as well.

Tor uses a variety of different keys, with three goals in mind: 1) encryption to ensure privacy of data within the Tor network, 2) authentication so clients know they're talking to the relays they meant to talk to, and 3) signatures to make sure all clients know the same set of relays.

Encryption: first, all connections in Tor use TLS link encryption, so observers can't look inside to see which circuit a given cell is intended for. Further, the Tor client establishes an ephemeral encryption key with each relay in the circuit; these extra layers of encryption mean that only the exit relay can read the cells. Both sides discard the circuit key when the circuit ends, so logging traffic and then breaking into the relay to discover the key won't work.

Authentication: Every Tor relay has a public decryption key called the "onion key". Each relay rotates its onion key every four weeks. When the Tor client establishes circuits, at each step it demands that the Tor relay prove knowledge of its onion key. That way the first node in the path can't just spoof the rest of the path. Because the Tor client chooses the path, it can make sure to get Tor's "distributed trust" property: no single relay in the path can know about both the client and what the client is doing.

Coordination: How do clients know what the relays are, and how do they know that they have the right keys for them? Each relay has a long-term public signing key called the "identity key". Each directory authority additionally has a "directory signing key". The directory authorities provide a signed list of all the known relays, and in that list are a set of certificates from each relay (self-signed by their identity key) specifying their keys, locations, exit policies, and so on. So unless the adversary can control a majority of the directory authorities (as of 2021 there are 10 directory authorities), they can't trick the Tor client into using other Tor relays.

How do clients know what the directory authorities are?

The Tor software comes with a built-in list of location and public key for each directory authority. So the only way to trick users into using a fake Tor network is to give them a specially modified version of the software.

How do users know they've got the right software?

When we distribute the source code or a package, we digitally sign it with GNU Privacy Guard. See the instructions on how to check Tor Browser's signature.

In order to be certain that it's really signed by us, you need to have met us in person and gotten a copy of our GPG key fingerprint, or you need to know somebody who has. If you're concerned about an attack on this level, we recommend you get involved with the security community and start meeting people.

Tor will reuse the same circuit for new TCP streams for 10 minutes, as long as the circuit is working fine. (If the circuit fails, Tor will switch to a new circuit immediately.)

But note that a single TCP stream (e.g. a long IRC connection) will stay on the same circuit forever. We don't rotate individual streams from one circuit to the next. Otherwise, an adversary with a partial view of the network would be given many chances over time to link you to your destination, rather than just one chance.